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Abstract— Data Encoding for compression is an area where  

different methodologies have been defined for the purpose. 

Hence choosing the best encoding is really important. In 

addition to different compression technologies and 

methodologies, selection of a good data compression tool is 

most important. There is a  range of different symbol-based 

and dictionary-based data compression techniques available. 

In order to choose the right algorithm, one must determine 

whether the purpose is to achieve better compression ratio 

or higher security. 

Keywords: Text data compression, Huffman Encoding, 

Arithmetic Encoding, LZW Encoding 

I. INTRODUCTION

Data Compression is  a  method  of  encoding  rules  that 

allows substantial reduction in the total number of bits to store 

or transmit a file[1] . Data Compression is possible because most 

of the real-world data is very redundant.  

There are two basic classes of data compression are applied 

in different areas: 

 Lossy data compression which is widely used to

compress image data files for communication or

archives purposes.

 Lossless data compression that is commonly used to

transmit or archive text or binary files required to keep

their information intact at any time. Lossless

compression techniques are further divided into

symbol-based and dictionary-based techniques.

In this paper, we’ll be doing a comparative study between three 

lossless data compression techniques, that is, Huffman 

Encoding, Arithmetic Encoding and LZW Encoding, where 

Huffman and Arithmetic Encoding techniques are symbol-based 

technique and LZW Encoding technique is a  dictionary-based 

technique. 

II. ENCODING ALGORITHMS

A. HUFFMAN ENCODING

Huffman Coding is a symbol-based data compression

technique. It generates variable length codes that are integral 

number of bits [2]. This encoding technique is entropy based i.e., 

symbols with higher probability or occurrence frequency get 

shorter codes. The Huffman Code for each symbol has a unique 

prefix attribute due to which they can be decoded correctly in 

spite of being variable length. 

There are 2 major steps to compress data using Huffman 

Encoding 

1. Build a Prefix Tree (which is essentially a Binary Search

Tree) from the input string symbols in a Bottom-Up

Manner:

i. Create a Leaf Node to represent each unique

symbol in the input string.

ii. Each Leaf Node has a weight, which is the

probability or frequency of the symbol’s

occurrence in the input string.

iii. Two free Nodes with the lowest weight are

identified. A parent node is created for these two

nodes. The weight of the parent node is assigned to

be the sum of its two child nodes.

iv. The parent node is added to the list of free nodes

and the two child nodes are removed from the list

v. Steps ‘c’ and ‘d’ are repeated until only one free

node is left. This node is designated as the root of

the tree.

2. Traversing the Prefix Tree to assign Prefix Code to each

symbol respectively.

i. Start traversing the Prefix Tree from the Root

Node.

ii. While traversing to a child on the left, write 0.

iii. While traversing to a child on the right, write 1.
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Assume that C is a set of n characters and that each character 

      𝒄 ∈ 𝑪  is an object with an attribute c.freq giving its frequency. 

Let Q be the list of free nodes. 

Huffman Encoding Algorithm[3]:  

 HUFFMAN(C ) 

 n = |C| 

 Q = C 

 for i = 1 to n - 1 

                      allocate a new node z 

                z.left = x = EXTRACT-MIN(Q) 

z.right = y = EXTRACT-MIN(Q) 

    z.freq = x.freq+y.freq 

    INSERT (Q,z) 

 return EXTRACT-MIN(Q) 

 

Let dT (c) be the length of the codeword for each character c. 

The number of bits required to encode the input string is: 

𝑩(𝑻) = ∑ 𝒄. 𝒇𝒓𝒆𝒒 ∗  𝒅𝑻 (𝒄) ;   𝒄 ∈ 𝑪      ---(1) 

 

Consider the Table 1 shown below: 

 

Table 1 List of Characters and their Appearance 

Frequency 

Character A B  C D E 

Appearance 15 7 6 6 5 

 

Each of these five nodes A, B, C, D and E are the leaf nodes. 

Initially, they form the list of free nodes. 

The first iteration through the tree finds D (or C) and E with 

lowest weights 6 and 5. These two are joined to a new parent 

node with weight = 6+5 = 11. Nodes D and E are then removed 

from the list of free nodes. 

On the next iteration, the two nodes with lowest weights are 

the nodes B and C. These are attached to another new parent 

node altogether. The new parent node is assigned weight 13. B 

and C are removed from the list of free nodes.  

In the succeeding iteration, the B/C and D/E parent nodes 

(with weights 13 and 11 respectively) are identified to be the 

lowest and tied to a new parent node with weight = 13+11 = 24. 

Finally, in the last iteration, only free nodes left are A (weight 

= 15) and the parent node for B/C and D/E (weight = 24). These 

two are attached to a new parent node with weight 15+24 = 39 

and is the only free node remaining in the free node list, 

signifying that the tree is complete.  

 
Figure 1: The Huffman Tree 

 

To determine the unique prefix code for each symbol, we 

traverse the Huffman Tree as mentioned under I.2. This 

technique assigns the following prefix codes to the characters:  

 

Table 2 The Huffman Code Table 

A 0 

B 100 

C 101 

D 110 

E 111 

 

Using equation (1), the total number of bits required to encode 

the input string: 

= 15 * 1 + 7 * 3 + 6 * 3 + 6 * 3 + 5 * 3 = 15 + 21 + 18 + 18 + 

15  

= 87 bits.  

In order to decode the encoded string, it is required to send the 

List of Characters and their Appearance Frequency along with 

the Huffman Codes. 

B. ARITHMETIC ENCODING ALGORITHM 

Arithmetic coding is a data compression technique that 

encodes data string by creating a code string which represents a 

fractional value on the number line between 0 and 1[4]. The 

coding algorithm is symbol-wise recursive; that is, it operates 

upon and encodes one data symbol per iteration. On each 

iteration, the algorithm successively partitions an interval of the 

number line between 0 and 1 and retains one of the partitions as 

the new interval. Thus, the algorithm successively deals with 

smaller intervals, and the code string, viewed as a magnitude, 

lies in each of the nested intervals. The data structure used here 

is HashMap. 

Arithmetic coding is the process of subdividing a unit 

interval such that: 

 Each codeword is the sum of probabilities of preceding 

symbols. 

 The width of each subinterval to the right gives the 

probability of that symbol. 

Arithmetic Coding Algorithm[5]: 

encode_symbol(symbol, cum_prob): 

 range = high – low 

 high = low + range * cum_prob[symbol -1] 

 low = low + range * cum_prob[symbol] 

The function encode_symbol should be called repeatedly for 

each symbol in the file until you encounter a terminator. 

The input to the algorithm is file that is to be compressed and 

a probability table having the probabilities of each character in 

the file. We have calculated the probabilities by finding the 

relative frequency of each character in the file. All the 

probabilities will be in range [0,1). The characters are also 

arranged in order of their ASCII values.  

The output of the program will be the encoded string which 

will consist of floating-point values between 0 and 1.  

Consider the Table 3 as shown: 

Table 3 List of characters and their respective 

probability 

Character a b c d 

Probability 0.5 0.25 0.125 0.125 

 

Consider the Figure shown below: 

 

 

 

 

 

Figure 2: Codewords of Table 1 in unit interval 

 

 Consider an example string of “abcd”, let the probability of 

each character be as shown in Table 3 .  

The first symbol in the string is ‘a’ so the corresponding 

interval to be considered is [0, 0.5). This is interval is to be 

further divided into a number line similar to that of Figure 2 with 

the end points being 0 and 0.5. 

Let ‘r’ be the range of the interval. The range of new interval 

is 0.5. The new range of each symbol is calculated by: 

Range of symbol ( R ) = l : l + r * (probability of symbol) 

 where, l is lower limit  -----( 2 ) 

a b c d 

0

  a 

0.5 0.75 

Niharika Poddar et al | IJCSET(www.ijcset.net) | 2021 | Volume 11, 1-5

2



0

  a 

0.75 

0.25

  a 

0.375 

In the above example, for ‘a’ the new range is given by:  

Ra =  0 : 0 + 0.5 * 0.5 = [0 :  0.25) 

 for ‘b’ the new range is given by: 

  Rb = 0.25 + 0.5 * 0.25 =[ 0.25 : 0.375) 

Similarly, for ‘c’ and ‘d’ we get Rc = [0.375, 0.4375) and Rd  =  

[0.4375, 1) 

Now the next symbol is ‘b’ so the corresponding interval to be 

considered is [0.25, 0.375). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Figure 3 Successive division of interval 

 

Using equation (2), new values of ranges of each symbol is 

calculated repeatedly until the last character is reached as 

shown in Figure 3. In the string, the last character is ‘d’, so 

from the last partition the interval of ‘d’ is selected; that is 

[0.357421875, 0.359375). So, the code word of the string will 

be any number that lies between the range: 0.357421875 ≤ 

codeword < 0.359375 

The iteration is terminated when the method encounters an end 

of file or a predefined termination character. 

 

C. LZW ENCODING ALGORITHM 

The Lempel-Ziv-Welch or LZW Encoding Technique is a 

dictionary-based compression scheme whereby groups of 

symbols that appear in an adaptive dictionary are looked for in 

the input string [6]. If a pattern is found in the dictionary, the 

index of the pattern is the output instead of the code for the 

symbols. The longer the matching pattern, better the 

compression ratio. 

 An adaptive dictionary always saves all ASCII 

characters from 0-255 with respective index. Initially 

the dictionary contains only these 256 entries. 

 LZW tends to identify repeated sequences in the 

input data and on encountering a new pattern, it adds 

it to the dictionary. 

LZW Algorithm[7]: 

 LZW (input string S) 

       Initialize table with single character strings 

       P = first input character 

       WHILE not end of input stream 

        C = next input character 

         IF P + C is in the string table 

          P = P + C 

         ELSE 

          output the code for P 

         add P + C to the string table 

          P = C 

         END WHILE 

    output code for P  

 

Evidently, the most essential pre-requisite for the LZW 

Algorithm is a well – modelled dictionary. This can be achieved 

by using the Hash Table data structure.  

An important point to note is that the same copy of the above 

stated dictionary must be available with both the encoder and 

decoder for this technique to work correctly.   

  

Therefore, in order to achieve a complete LZW encoder: 

 Initialize the dictionary with codes 0-255  

 Insert newly discovered patterns in the string, 

generating a new index or code for them. 

With the above two points in mind, consider an example 

string[8] : “ABBABB”. After reading the input string, the 

dictionary has the following inclusions: 

 

Table 4 Dictionary additions after processing 

“ABBABB” 

String Code 

AB 257 

BB 258 

BA 259 

ABB 260 

 

To understand the generation of encoded output for 

“ABBABB”, consider the following table: 

 

Table 5 Generation of encoded output for “ABBABB” 

Input 

Symbol 

Working Output 

Code 

A Current String = “A”, already exists in 

dictionary 

 

B Current String = “AB”, added to 

dictionary. Last substring of the 

current string matched in dictionary = 

“A”, therefore index of “A” is the 

corresponding output code. 

Current String = “B”. 

65 

B Current String = “BB”, added to 

dictionary. Last substring of the 

current string matched in dictionary = 

“B”, therefore index of “B” is the 

corresponding output code. 

Current String = “B” 

66 

A Current String = “BA”, added to 

dictionary. Last substring of the 

current string matched in dictionary = 

“B”, therefore index of “B” is the 

corresponding output code. 

Current String = “A” 

66 

B Current String = “AB”, already exists  

B Current String = “ABB” added to 

dictionary. Last substring of the 

current string matched in the 

dictionary = “AB”, therefore index of 

“AB” is the corresponding output 

code. 

257 

Therefore, the encoded output for the input string “ABBABB” is 

65 66 66 257. 

a b c d 

0.5 0.875 1 

a b c d 

0   a 0.25 0.375 0.4375 0.5 

a b c d 

0.3125 0.34375 0.359375 

a b c d 
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III. EXPERIMENTAL RESULTS 
The tables 7-9 shows the time taken for the various algorithms 

and Fig 4-6 shows the graph of varying file size and the 

corresponding time taken by various algorithms. 

 

a. For Huffman encoding algorithm: 

Table 7 Tabulated values of time taken to encode text of 

various file sizes by Huffman Encoding 

 

Size of file 

 (in bytes) 

Time taken by Huffman 

Coding (in µs) 

24603 3660.5 

100000 19381 

426754 21443.6 

1000000 46316.4 

1029744 3735.7 

2473400 3781 

4638690 87685.6 

 

 
Figure 4 Graph of Time taken vs Size of file by Huffman 

Encoding 

 

b. For Arithmetic encoding algorithm: 

 

Table 8 Tabulated values of time taken to encode text of 

various file sizes by Arithmetic Encoding 

 

Size of file  

(in bytes) 

Time taken by Arithmetic 

Coding(in µs) 

24603 73720 

100000 138249 

426754 658400 

1000000 608258 

1029744 71496 

2473400 2051045 

4638690 1496322 

 

 
Figure 5 Graph of Time taken vs Size of file by Arithmetic 

Encoding 

c. For LZW encoding algorithm: 

Table 9 Tabulated values of time taken to encode text of 

various file sizes by LZW Encoding 

Size of file  

(in bytes) 

Time taken by LZW Coding 

(in µs) 

24603 550.4 

100000 483204.5 

426754 63526 

1000000 2120581.3 

1029744 3240.1 

2473400 1682 

4638690 8006460 

 
Figure 6 Graph of Time taken vs Size of file by LZW 

Encoding 

 

On careful examination of graphs and tables, it is observed that, 

although the theoretical Time Complexity for Huffman 

Encoding is more than that of Arithmetic and LZW Encoding, 

the former technique outperforms the latter.  

 

IV  RESULT DISCUSSION 
A. Space Complexity 

Following are the conclusions drawn about the Space 

Complexity of the Compression Algorithms discussed: 

 For Huffman Encoding, the Space Complexity is 2*O(|Σ|) 

= O(|Σ|) (input string is passed twice: once to calculate 

frequency of occurrence, and again to construct the Prefix 

Tree), where |Σ| = no. of unique characters in the input 

string. 

 For Arithmetic Encoding, the Space Complexity depends 

on number of different input symbols where maximum is 

O(n), where n is the length of message or file. 

 For LZW Encoding, the Space Complexity is O(n) as the 

initial dictionary size is fixed and independent of the input 

length. Each byte is read only once and the complexity of 

operating each character is constant. 

B. Time Complexity 

Fig 7. Shows the graph of time taken by various algorithms 

for varying size of file. Following are the conclusions 

drawn about the Time Complexity of the Compression 

Algorithms discussed: 

 
Figure 7 Graph of Time taken vs Size of file by all 

algorithm 
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 For Huffman Encoding, the Time Complexity is 

O(nlogn), where n is the no. of characters in the input 

string. Using Heap Sort, each iteration requires log(n) 

time to determine the lowest weight node. 

 For Arithmetic Encoding, the Time Complexity 

depends on the number of different symbols and length 

of symbols, that is, n + n*| Σ |, where Σ is unique 

symbols set. In the comparison we are limiting the n( 

|Σ| ) to ASCII range of [0,255]. So, the time complexity 

is O(n*|Σ|)=O(n) where                   |Σ| is a constant 

set of values and n(|Σ|) is ≤ 256. 
 For LZW Encoding, the Time Complexity of operation 

of each character is a constant  

V  CONCLUSION 

On careful examination of the results obtained by encoding our 

Example Data using all the three Encoding Techniques, we 

concluded that choosing the right encoding technique for data 

compression depends on the data to be compressed. For diverse 

data, symbol-based encoding techniques are more efficient. For 

massive data with higher pattern repetitions, dictionary-based 

encoding techniques prove to be a better choice. 

Huffman encoding scheme results in saving lot of storage space, 

since the binary codes generated are variable in length. It 

generates shorter binary codes for encoding symbols that appear 

more frequently in the input string. Since length of all the binary 

codes is different, it becomes difficult for the decoding software 

to detect whether the encoded data is corrupt. This can result in 

an incorrect decoding and subsequently, a wrong output. Hence, 

this feature is beneficial from security perspective. 

Arithmetic coding typically has a better compression ratio 

than Huffman coding, as it produces a single symbol rather than 

several separate codewords. Arithmetic coding differs from 

other forms of entropy encoding as  rather than separating the 

input into component symbols and replacing each with a code, 

arithmetic coding encodes the entire message into a single 

number, a fraction ‘n’ where 0 ≤ n < 1. There are a few 

disadvantages of arithmetic coding. One is that the whole 

codeword must be received to start decoding the symbols, and if 

there exists a corrupt symbol then entire message is corrupted. 

Another is that there is a limit to the number of symbols to 

encode within a codeword. 

LZW technique is simple, and there is no need to analyze the 

input text. But the implementation becomes difficult in terms of 

managing the dictionary. The overhead of storing a variable 

length string and added to the stated issue. Files with 0 

repetitions although encoded, are not compressed at all. 
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