
Comparitive Analysis of Data Encoding

Techniques

Ms. Niharika Poddar
3rd Year, Dept. of Computer Science & Engineering

RNS Institute of Technology

Bengaluru, India
npoddar338@gmail.com

Ms.Varnika Bagaria

3rd Year, Dept. of Computer Science & Engineering

RNS Institute of Technology

Bengaluru, India

varnikabagaria0110@gmail.com

Mrs. Sampada K.S.

 Dept. of Computer Science & Engineering

RNS Institute of Technology

Bengaluru, India

k.s.sampada@gmail.com

Abstract— Data Encoding for compression is an area where

different methodologies have been defined for the purpose.

Hence choosing the best encoding is really important. In

addition to different compression technologies and

methodologies, selection of a good data compression tool is

most important. There is a range of different symbol-based

and dictionary-based data compression techniques available.

In order to choose the right algorithm, one must determine

whether the purpose is to achieve better compression ratio

or higher security.

Keywords: Text data compression, Huffman Encoding,

Arithmetic Encoding, LZW Encoding

I. INTRODUCTION

Data Compression is a method of encoding rules that

allows substantial reduction in the total number of bits to store

or transmit a file[1] . Data Compression is possible because most

of the real-world data is very redundant.

There are two basic classes of data compression are applied

in different areas:

 Lossy data compression which is widely used to

compress image data files for communication or

archives purposes.

 Lossless data compression that is commonly used to

transmit or archive text or binary files required to keep

their information intact at any time. Lossless

compression techniques are further divided into

symbol-based and dictionary-based techniques.

In this paper, we’ll be doing a comparative study between three

lossless data compression techniques, that is, Huffman

Encoding, Arithmetic Encoding and LZW Encoding, where

Huffman and Arithmetic Encoding techniques are symbol-based

technique and LZW Encoding technique is a dictionary-based

technique.

II. ENCODING ALGORITHMS

A. HUFFMAN ENCODING

Huffman Coding is a symbol-based data compression

technique. It generates variable length codes that are integral

number of bits [2]. This encoding technique is entropy based i.e.,

symbols with higher probability or occurrence frequency get

shorter codes. The Huffman Code for each symbol has a unique

prefix attribute due to which they can be decoded correctly in

spite of being variable length.

There are 2 major steps to compress data using Huffman

Encoding

1. Build a Prefix Tree (which is essentially a Binary Search

Tree) from the input string symbols in a Bottom-Up

Manner:

i. Create a Leaf Node to represent each unique

symbol in the input string.

ii. Each Leaf Node has a weight, which is the

probability or frequency of the symbol’s

occurrence in the input string.

iii. Two free Nodes with the lowest weight are

identified. A parent node is created for these two

nodes. The weight of the parent node is assigned to

be the sum of its two child nodes.

iv. The parent node is added to the list of free nodes

and the two child nodes are removed from the list

v. Steps ‘c’ and ‘d’ are repeated until only one free

node is left. This node is designated as the root of

the tree.

2. Traversing the Prefix Tree to assign Prefix Code to each

symbol respectively.

i. Start traversing the Prefix Tree from the Root

Node.

ii. While traversing to a child on the left, write 0.

iii. While traversing to a child on the right, write 1.

Niharika Poddar et al | IJCSET(www.ijcset.net) | 2021 | Volume 11, 1-5

1

mailto:npoddar338@gmail.com

0.875 1

Assume that C is a set of n characters and that each character

 𝒄 ∈ 𝑪 is an object with an attribute c.freq giving its frequency.

Let Q be the list of free nodes.

Huffman Encoding Algorithm[3]:

 HUFFMAN(C)

 n = |C|

 Q = C

 for i = 1 to n - 1

 allocate a new node z

 z.left = x = EXTRACT-MIN(Q)

z.right = y = EXTRACT-MIN(Q)

 z.freq = x.freq+y.freq

 INSERT (Q,z)

 return EXTRACT-MIN(Q)

Let dT (c) be the length of the codeword for each character c.

The number of bits required to encode the input string is:

𝑩(𝑻) = ∑ 𝒄. 𝒇𝒓𝒆𝒒 ∗ 𝒅𝑻 (𝒄) ; 𝒄 ∈ 𝑪 ---(1)

Consider the Table 1 shown below:

Table 1 List of Characters and their Appearance

Frequency

Character A B C D E

Appearance 15 7 6 6 5

Each of these five nodes A, B, C, D and E are the leaf nodes.

Initially, they form the list of free nodes.

The first iteration through the tree finds D (or C) and E with

lowest weights 6 and 5. These two are joined to a new parent

node with weight = 6+5 = 11. Nodes D and E are then removed

from the list of free nodes.

On the next iteration, the two nodes with lowest weights are

the nodes B and C. These are attached to another new parent

node altogether. The new parent node is assigned weight 13. B

and C are removed from the list of free nodes.

In the succeeding iteration, the B/C and D/E parent nodes

(with weights 13 and 11 respectively) are identified to be the

lowest and tied to a new parent node with weight = 13+11 = 24.

Finally, in the last iteration, only free nodes left are A (weight

= 15) and the parent node for B/C and D/E (weight = 24). These

two are attached to a new parent node with weight 15+24 = 39

and is the only free node remaining in the free node list,

signifying that the tree is complete.

Figure 1: The Huffman Tree

To determine the unique prefix code for each symbol, we

traverse the Huffman Tree as mentioned under I.2. This

technique assigns the following prefix codes to the characters:

Table 2 The Huffman Code Table

A 0

B 100

C 101

D 110

E 111

Using equation (1), the total number of bits required to encode

the input string:

= 15 * 1 + 7 * 3 + 6 * 3 + 6 * 3 + 5 * 3 = 15 + 21 + 18 + 18 +

15

= 87 bits.

In order to decode the encoded string, it is required to send the

List of Characters and their Appearance Frequency along with

the Huffman Codes.

B. ARITHMETIC ENCODING ALGORITHM

Arithmetic coding is a data compression technique that

encodes data string by creating a code string which represents a

fractional value on the number line between 0 and 1[4]. The

coding algorithm is symbol-wise recursive; that is, it operates

upon and encodes one data symbol per iteration. On each

iteration, the algorithm successively partitions an interval of the

number line between 0 and 1 and retains one of the partitions as

the new interval. Thus, the algorithm successively deals with

smaller intervals, and the code string, viewed as a magnitude,

lies in each of the nested intervals. The data structure used here

is HashMap.

Arithmetic coding is the process of subdividing a unit

interval such that:

 Each codeword is the sum of probabilities of preceding

symbols.

 The width of each subinterval to the right gives the

probability of that symbol.

Arithmetic Coding Algorithm[5]:

encode_symbol(symbol, cum_prob):

 range = high – low

 high = low + range * cum_prob[symbol -1]

 low = low + range * cum_prob[symbol]

The function encode_symbol should be called repeatedly for

each symbol in the file until you encounter a terminator.

The input to the algorithm is file that is to be compressed and

a probability table having the probabilities of each character in

the file. We have calculated the probabilities by finding the

relative frequency of each character in the file. All the

probabilities will be in range [0,1). The characters are also

arranged in order of their ASCII values.

The output of the program will be the encoded string which

will consist of floating-point values between 0 and 1.

Consider the Table 3 as shown:

Table 3 List of characters and their respective

probability

Character a b c d

Probability 0.5 0.25 0.125 0.125

Consider the Figure shown below:

Figure 2: Codewords of Table 1 in unit interval

 Consider an example string of “abcd”, let the probability of

each character be as shown in Table 3 .

The first symbol in the string is ‘a’ so the corresponding

interval to be considered is [0, 0.5). This is interval is to be

further divided into a number line similar to that of Figure 2 with

the end points being 0 and 0.5.

Let ‘r’ be the range of the interval. The range of new interval

is 0.5. The new range of each symbol is calculated by:

Range of symbol (R) = l : l + r * (probability of symbol)

 where, l is lower limit -----(2)

a b c d

0

 a

0.5 0.75

Niharika Poddar et al | IJCSET(www.ijcset.net) | 2021 | Volume 11, 1-5

2

0

 a

0.75

0.25

 a

0.375

In the above example, for ‘a’ the new range is given by:

Ra = 0 : 0 + 0.5 * 0.5 = [0 : 0.25)

 for ‘b’ the new range is given by:

 Rb = 0.25 + 0.5 * 0.25 =[0.25 : 0.375)

Similarly, for ‘c’ and ‘d’ we get Rc = [0.375, 0.4375) and Rd =

[0.4375, 1)

Now the next symbol is ‘b’ so the corresponding interval to be

considered is [0.25, 0.375).

Figure 3 Successive division of interval

Using equation (2), new values of ranges of each symbol is

calculated repeatedly until the last character is reached as

shown in Figure 3. In the string, the last character is ‘d’, so

from the last partition the interval of ‘d’ is selected; that is

[0.357421875, 0.359375). So, the code word of the string will

be any number that lies between the range: 0.357421875 ≤

codeword < 0.359375

The iteration is terminated when the method encounters an end

of file or a predefined termination character.

C. LZW ENCODING ALGORITHM

The Lempel-Ziv-Welch or LZW Encoding Technique is a

dictionary-based compression scheme whereby groups of

symbols that appear in an adaptive dictionary are looked for in

the input string [6]. If a pattern is found in the dictionary, the

index of the pattern is the output instead of the code for the

symbols. The longer the matching pattern, better the

compression ratio.

 An adaptive dictionary always saves all ASCII

characters from 0-255 with respective index. Initially

the dictionary contains only these 256 entries.

 LZW tends to identify repeated sequences in the

input data and on encountering a new pattern, it adds

it to the dictionary.

LZW Algorithm[7]:

 LZW (input string S)

 Initialize table with single character strings

 P = first input character

 WHILE not end of input stream

 C = next input character

 IF P + C is in the string table

 P = P + C

 ELSE

 output the code for P

 add P + C to the string table

 P = C

 END WHILE

 output code for P

Evidently, the most essential pre-requisite for the LZW

Algorithm is a well – modelled dictionary. This can be achieved

by using the Hash Table data structure.

An important point to note is that the same copy of the above

stated dictionary must be available with both the encoder and

decoder for this technique to work correctly.

Therefore, in order to achieve a complete LZW encoder:

 Initialize the dictionary with codes 0-255

 Insert newly discovered patterns in the string,

generating a new index or code for them.

With the above two points in mind, consider an example

string[8] : “ABBABB”. After reading the input string, the

dictionary has the following inclusions:

Table 4 Dictionary additions after processing

“ABBABB”

String Code

AB 257

BB 258

BA 259

ABB 260

To understand the generation of encoded output for

“ABBABB”, consider the following table:

Table 5 Generation of encoded output for “ABBABB”

Input

Symbol

Working Output

Code

A Current String = “A”, already exists in

dictionary

B Current String = “AB”, added to

dictionary. Last substring of the

current string matched in dictionary =

“A”, therefore index of “A” is the

corresponding output code.

Current String = “B”.

65

B Current String = “BB”, added to

dictionary. Last substring of the

current string matched in dictionary =

“B”, therefore index of “B” is the

corresponding output code.

Current String = “B”

66

A Current String = “BA”, added to

dictionary. Last substring of the

current string matched in dictionary =

“B”, therefore index of “B” is the

corresponding output code.

Current String = “A”

66

B Current String = “AB”, already exists

B Current String = “ABB” added to

dictionary. Last substring of the

current string matched in the

dictionary = “AB”, therefore index of

“AB” is the corresponding output

code.

257

Therefore, the encoded output for the input string “ABBABB” is

65 66 66 257.

a b c d

0.5 0.875 1

a b c d

0 a 0.25 0.375 0.4375 0.5

a b c d

0.3125 0.34375 0.359375

a b c d

Niharika Poddar et al | IJCSET(www.ijcset.net) | 2021 | Volume 11, 1-5

3

III. EXPERIMENTAL RESULTS
The tables 7-9 shows the time taken for the various algorithms

and Fig 4-6 shows the graph of varying file size and the

corresponding time taken by various algorithms.

a. For Huffman encoding algorithm:

Table 7 Tabulated values of time taken to encode text of

various file sizes by Huffman Encoding

Size of file

 (in bytes)

Time taken by Huffman

Coding (in µs)

24603 3660.5

100000 19381

426754 21443.6

1000000 46316.4

1029744 3735.7

2473400 3781

4638690 87685.6

Figure 4 Graph of Time taken vs Size of file by Huffman

Encoding

b. For Arithmetic encoding algorithm:

Table 8 Tabulated values of time taken to encode text of

various file sizes by Arithmetic Encoding

Size of file

(in bytes)

Time taken by Arithmetic

Coding(in µs)

24603 73720

100000 138249

426754 658400

1000000 608258

1029744 71496

2473400 2051045

4638690 1496322

Figure 5 Graph of Time taken vs Size of file by Arithmetic

Encoding

c. For LZW encoding algorithm:

Table 9 Tabulated values of time taken to encode text of

various file sizes by LZW Encoding

Size of file

(in bytes)

Time taken by LZW Coding

(in µs)

24603 550.4

100000 483204.5

426754 63526

1000000 2120581.3

1029744 3240.1

2473400 1682

4638690 8006460

Figure 6 Graph of Time taken vs Size of file by LZW

Encoding

On careful examination of graphs and tables, it is observed that,

although the theoretical Time Complexity for Huffman

Encoding is more than that of Arithmetic and LZW Encoding,

the former technique outperforms the latter.

IV RESULT DISCUSSION
A. Space Complexity

Following are the conclusions drawn about the Space

Complexity of the Compression Algorithms discussed:

 For Huffman Encoding, the Space Complexity is 2*O(|Σ|)

= O(|Σ|) (input string is passed twice: once to calculate

frequency of occurrence, and again to construct the Prefix

Tree), where |Σ| = no. of unique characters in the input

string.

 For Arithmetic Encoding, the Space Complexity depends

on number of different input symbols where maximum is

O(n), where n is the length of message or file.

 For LZW Encoding, the Space Complexity is O(n) as the

initial dictionary size is fixed and independent of the input

length. Each byte is read only once and the complexity of

operating each character is constant.

B. Time Complexity

Fig 7. Shows the graph of time taken by various algorithms

for varying size of file. Following are the conclusions

drawn about the Time Complexity of the Compression

Algorithms discussed:

Figure 7 Graph of Time taken vs Size of file by all

algorithm

Niharika Poddar et al | IJCSET(www.ijcset.net) | 2021 | Volume 11, 1-5

4

 For Huffman Encoding, the Time Complexity is

O(nlogn), where n is the no. of characters in the input

string. Using Heap Sort, each iteration requires log(n)

time to determine the lowest weight node.

 For Arithmetic Encoding, the Time Complexity

depends on the number of different symbols and length

of symbols, that is, n + n*| Σ |, where Σ is unique

symbols set. In the comparison we are limiting the n(

|Σ|) to ASCII range of [0,255]. So, the time complexity

is O(n*|Σ|)=O(n) where |Σ| is a constant

set of values and n(|Σ|) is ≤ 256.
 For LZW Encoding, the Time Complexity of operation

of each character is a constant

V CONCLUSION

On careful examination of the results obtained by encoding our

Example Data using all the three Encoding Techniques, we

concluded that choosing the right encoding technique for data

compression depends on the data to be compressed. For diverse

data, symbol-based encoding techniques are more efficient. For

massive data with higher pattern repetitions, dictionary-based

encoding techniques prove to be a better choice.

Huffman encoding scheme results in saving lot of storage space,

since the binary codes generated are variable in length. It

generates shorter binary codes for encoding symbols that appear

more frequently in the input string. Since length of all the binary

codes is different, it becomes difficult for the decoding software

to detect whether the encoded data is corrupt. This can result in

an incorrect decoding and subsequently, a wrong output. Hence,

this feature is beneficial from security perspective.

Arithmetic coding typically has a better compression ratio

than Huffman coding, as it produces a single symbol rather than

several separate codewords. Arithmetic coding differs from

other forms of entropy encoding as rather than separating the

input into component symbols and replacing each with a code,

arithmetic coding encodes the entire message into a single

number, a fraction ‘n’ where 0 ≤ n < 1. There are a few

disadvantages of arithmetic coding. One is that the whole

codeword must be received to start decoding the symbols, and if

there exists a corrupt symbol then entire message is corrupted.

Another is that there is a limit to the number of symbols to

encode within a codeword.

LZW technique is simple, and there is no need to analyze the

input text. But the implementation becomes difficult in terms of

managing the dictionary. The overhead of storing a variable

length string and added to the stated issue. Files with 0

repetitions although encoded, are not compressed at all.

VI REFERENCES
[1] Amandeep Singh Sidhu, Er. Meenakshi Garg “Research

Paper on Text Data Compression Algorithm using Hybrid

Approach” International Journal of Computer Science and

Mobile Computing

[2] Mark Nelson, Jean-loup Gailly (1995) The Data

Compression Book (2nd Edition). MIS:PressSubs. of Henry

Holt, & Co. 115 W. 18th St. New York, United States

[3] Thomas H. Cormen, Charles E. Leiserson, Ronald L.

Rivest, Clifford Stein (2009) Introduction To Algorithms

(3rd Edition). The MIT Press Cambridge, Massachusetts,

London, England

[4] Glen G. Langdon, Jr “An Introduction to Arithmetic

Coding”

[5] Ian H. Willen, Radford M. Neal, And John G. Cleary

“Arithmetic Coding For Data Compression”

[6] Mark Nelson, Jean-loup Gailly (1995) The Data

Compression Book (2nd Edition). MIS:PressSubs. of Henry

Holt, & Co. 115 W. 18th St. New York, United States

[7] Amartya Ranjan Saikia “LZW(Lempel–Ziv–Welch)

Compression technique“

[8] Mark Nelson “LZW Data Compression Revisited”

VII ACKNOWLEDGEMENT
We are grateful to Mrs. Sampada K. S., Assistant

Professor, CSE Department, RNSIT for mentoring us

to present this paper successfully.

Niharika Poddar et al | IJCSET(www.ijcset.net) | 2021 | Volume 11, 1-5

5

	Varnika Bagaria
	Untitled

